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1. Introduction

The study of quantum mechanical black holes continues to provide new insights into the

basic structure of string theory and quantum gravity. In this paper we will focus on

supersymmetric black holes arising in Calabi-Yau compactifications of type II string theory,

which are composed of BPS D-branes wrapping various cycles in the Calabi-Yau.

The most straightforward computations of black hole entropy involve a direct enu-

meration of supersymmetric ground states of particular D-brane system [1]. In general

this computation is quite difficult, but considerable progress has been made in a variety of

special cases, often by using duality, as in [2]. Recently, however, an alternative approach

to black hole entropy has been proposed [3, 4]. Rather than study the complete brane

configuration, one instead investigates the near horizon quantum mechanics of a collection

of D-branes moving in the supergravity background geometry sourced by the remainder of

the branes comprising the black hole. By separating the system into “probe” and “back-

ground” branes in this way, many of the mathematical problems become considerably

more tractable. One can then, at least in some cases, reproduce entropy by enumerating

the supersymmetric ground states of the near horizon probe quantum mechanics.

Actually, as we will argue below, this picture of “probe” and “background” is essentially

unavoidable once one realizes that the attractor mechanism forces BPS black holes to be

marginally stable.

In this paper we will adopt the strategy of [3, 4]. These papers focused on type IIA,

which contains a variety of BPS states: the B-branes, which — very roughly speaking
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— correspond to holomorphic sub-manifolds of the Calabi-Yau. The authors of [3, 4]

successfully reproduced the entropy of black holes whose charge is comprised mainly of

0-branes. In doing so, they used the fact that the moduli space of a probe 0-brane on the

Calabi-Yau is just the Calabi-Yau itself. So the near horizon theory of a collection of probe

0-branes reduces to a non-linear sigma model whose target space is the Calabi-Yau. The

general case — which involves the quantum mechanics of various higher dimensional branes

— remains unsolved, although some progress has been made [5]. In this paper we will focus

on type IIB, where we are presented with only one type of BPS state: the A-branes, which

wrap special Lagrangian 3-cycles of the Calabi-Yau. One might therefore hope that a IIB

description would allow us to compute in one fell swoop the black hole entropy for all

possible BPS configurations. In this paper we will report only partial progress towards this

ambitious goal.

To start, we must first understand the quantum mechanics on the moduli space of

A-branes. The analysis of the moduli space is somewhat subtle. This is because as the

Calabi-Yau moduli are varied, it is possible for these D-branes to decay and form bound

states with other D-branes. In fact, the attractor mechanism forces the moduli to take on

special values which happen to make the D-brane marginally stable against a large number

of decays. This leads one to consider the moduli space of decay products. In general, one

can then enumerate the quantum states of a D-brane black hole by the following procedure

1. Enumerate the possible marginal decay products.

2. Enumerate the marginal bindings “at threshold” of these products.

3. Calculate the cohomology of the moduli space of the resulting objects.

In terms of string coupling, this first step is classical while the second and third steps are

quantum mechanical. For the first step one may use concepts such as Π-stability or the

existence of special Lagrangians. The second step involves the use of the Myers effect [6],

following [3, 4].

Most of this paper will focus on the third step, where we compute cohomology on

the moduli space of special Lagrangian 3-brane probes. The crucial point is that the RR

charge of a black hole background interacts with the D-brane probe, effectively producing

a “magnetic field” on the moduli space of the D-branes probe. That is, the cohomology

computation is bundle-valued for some U(1)-bundle. We will argue that c1 of this bundle

is proportional to the Kähler form on moduli space, and that moreover this Kähler form is

fixed by the attractor mechanism. This is very similar in flavor to the computation of [4].

These authors focused on D0-D4 systems but we will attempt, with modest success, to be

more general.

The primary problem is then to determine the structure of the A-brane moduli space.

In general this is quite complicated, but in some cases one can use mirror symmetry to

turn this back into a problem in type IIA. This relies on the conjecture of [7] that any

Calabi-Yau manifold can be written as a (possibly degenerate) T 3 fibration. If we consider

black holes whose charge comes mostly from D3 branes wrapping this T 3 fiber, then we
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may use the techniques of [7] to study this moduli space. This argument reproduces the

correct entropy, and is essentially the mirror of the computation of [4].

This argument suffers from the same problems as the original SYZ construction. In

particular, any proper argument must account for the degeneracies of the T 3 fibration. The

remainder of the paper describes the more precise K3 × T 2 construction, which uses the

Fourier-Mukai transform to implement mirror symmetry.

An outline of this paper is as follows. In section 2 we discuss attractive Calabi-Yau

three-folds, and demonstrate that they have special properties when it comes to D-brane

decay. In section 3 we analyze the quantum mechanics of D-branes wrapping special

Lagrangian cycles. In section 4 we perform an entropy calculation by implementing mirror

symmetry as T-duality. As an illustration of this technique, we describe the special case of

type IIB on T 6. In section 5 we describe an analogous computation for compactifications on

K3×T 2. In this case we can do the computation exactly, without resorting to conjectures

about the action of mirror symmetry. We end with a few concluding remarks.

2. Black hole attractors and D-brane decay

We start by reviewing the black hole attractor mechanism in type IIB, before describing

its relation to marginal stability and D-brane decay.

2.1 Review: IIB attractors

Consider type IIB string theory compactified on a Calabi-Yau 3-fold Y . In the perturbative

string description, a supersymmetric state of this theory is given by a D3 brane wrapping

a special Lagrangian 3-cycle of Y . Such a wrapped D3 brane looks like a charged point-like

object in four dimensions, whose charge depends on the choice of 3-cycle. We will denote

by F (3) the element of H3(Y, Z) characterizing this charge: F (3) is Poincaré dual to the

homology cycle of the D3 brane.

We can also describe this supersymmetric object as a charged BPS black hole solution

of N = 2 supergravity in four dimensions [8 – 10]. This solution exhibits a curious feature

known as the attractor mechanism: at the horizon of the black hole the vector multiplet

moduli approach fixed values, which are determined only by the charge F (3) and not by

the asymptotic values of the moduli. In type IIB, these moduli describe complex structure

deformations of Y . At the horizon, the moduli are fixed by the condition that F (3) lies in

H3,0(Y )⊕H0,3(Y ) [11]. The holomorphic three form Ω on Y is a basis element of H3,0(Y ),

so this condition can be written as

F (3) = Im(CΩ) (2.1)

for some complex constant C. By introducing a symplectic basis for H3(Y, Z), one can

write this as an equation for the periods of the holomorphic 3-form. However, (2.1) is

sufficient for our purposes.

This attractor equation (2.1) is an equation for 2h2,1+2 unknowns — the 2h2,1 complex

structure moduli and the complex constant C — in terms of the b3(Y ) = 2h2,1 +2 charges.

So it is natural to expect that solutions of (2.1) are isolated as points in moduli space.
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However, it has been shown that although the solutions are isolated they are not always

unique [11].

To describe the structure of these solutions further, note that N = 2 supergravity

contains a gauge boson in the gravity multiplet — the graviphoton — in addition to gauge

bosons in vector multiplets. The charge measured by the graviphoton plays a special role

in the solution, since it is the central charge appearing in the supersymmetry algebra. It is

this charge that appears in all BPS-type relations describing the black hole solutions. In

terms of F (3), this charge is

Z = ieK/2

∫

Ω ∧ F (3), (2.2)

where

e−K = i

∫

Ω ∧ Ω̄ (2.3)

is the Kähler potential on the vector multiplet moduli space. The constant appearing

in (2.1) can be fixed by wedging both sides with Ω and integrating over Y . It is C = 2Z̄eK/2.

The near horizon geometry of the black hole is AdS2×S2×Y , where the geometry of Y

is constrained by (2.1). The AdS2 and S2 factors both have radius |Z| in four dimensional

Planck units. So the Bekenstein-Hawking entropy, which is proportional to the area of the

S2, is

S = π|Z|2. (2.4)

In this formula the central charge Z is evaluated at the attractor fixed point (2.1).

In addition, the D3 brane sources a 5-form field strength, which at the horizon is

F (5) = ωAdS2
∧ F (3) + ωS2 ∧ ⋆6F

(3). (2.5)

Here ωAdS2
and ωS2 are volume forms on AdS2 and S2, and ⋆6 is the Hodge star on Y .

The attractor solutions we have just described are valid only when certain conditions

are met. First, in order for the supergravity approximation to be good the characteristic

length scale of AdS2 × S2 must be large. That is, the area of the event horizon must be

large compared to the string scale. So we must take |Z| ≫ 1, which can be accomplished,

for example, by taking all of the charges to be large.

The second condition is slightly more subtle. We are assuming the degrees of freedom

observed are that of a compactification on Y . That is, we are ignoring any massive excita-

tions of the Calabi-Yau threefold (although in principle these may be accounted for in the

context of the attractor mechanism, see e.g. [12]). This requires all the characteristic sizes

of Y to be small compared to the size of AdS2×S2. Normally one thinks of “size” as being

associated with the complexified Kähler form B + iJ of a threefold, while the deformations

of complex structure are associated purely to the “shape”. This is a little näıve, however,

as we now discuss.

Let X be mirror to Y and consider deformations of the complex structure of Y and

the mirror deformations of B + iJ of X. There is a partition function of string states

associated to these spaces which will vary with the moduli and respect mirror symmetry. If

a characteristic length in the Calabi-Yau gets large one would expect the partition function

to contain light states. The areas of holomorphic curves in X are determined by B + iJ
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and are insensitive to deformations of complex structure. Thus, if B + iJ has any large

component one would expect the appearance of light states irrespective of the complex

structure.

Mirror to this statement, one expects that there must be complex structures for which

Y exhibits light states irrespective of the Kähler form. This seems counterintuitive at first,

as one can rescale the metric on Y (which is a deformation of the Kähler form) to make all

lengths small and thus remove any light (non-massless) states. However, this argument is

too classical. If Y is at “large complex structure” the characteristic length scales within Y

will differ wildly. The canonical example is that of a T 2 with one very long and one very

short 1-cycle. If we try to shrink the metric to shorten the longer scales, we will “run out of

moduli space” before the offending light modes can be brought under control. That is, the

shorter lengths would be made so short that they would violate any “minimum distance”

constraint as in [13].

So, our second constraint is that Y should not have large B + iJ (with respect to the

horizon area) and that it should not be mirror to space with large B + iJ . The first of

these conditions is not relevant to black hole solutions, as the B + iJ moduli are contained

in hypermultiplets which are constants for these solutions. So we are free to choose their

values to be whatever we like. The second condition is a constraint on complex structure

moduli, and limits the charges that we may consider. In particular, as we will see later in

sections 4 and 5, it will force us to take certain ratios of charges to be large. This constraint

is easiest to understand in the mirror IIA language, where it is just the requirement that

volumes of two cycles on X must be small compared to the characteristic length scale of

the four dimensional black hole geometry.

2.2 Marginal stability at attractor points

A central concept when discussing entropy is the notion of the moduli space of a D-brane.

When constructing a moduli space, the notion of stability is very important.

In general, many moduli space constructions run as follows: one looks for the moduli

space of some object by constructing the moduli space of more easily defined objects which

satisfy an appropriate stability criterion. For example, the moduli space of vector bundles

with an Hermitian-Yang-Mills connection is studied by starting with holomorphic vector

bundles and imposing µ-stability. In discussions of this form, a special case must always

be made for the marginally stable object. A marginally stable object must be viewed as a

“direct-sum” of its constituents in order to obtain the correct moduli space. There might

be other configurations of the constituents which are not equivalent to a direct sum, but

they are considered to be “S-equivalent” to the direct sum and are not counted as different

states. We refer to [14, 15], for example, for a discussion of S-equivalence. The important

point is that we need to know if a D-brane is unstable, marginally stable, or truly stable

in order to compute the moduli space correctly.

The attractor behavior described above has several striking consequences, which we

will exploit in our computation of black hole entropy. The most crucial of these involves

D-brane decay and marginal stability, as we will now describe. We will continue to work
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with type IIB on a Calabi-Yau Y . For other discussions of special Lagrangians at attractor

points, see [16, 17].

To understand D-brane decay, consider what happens to a supersymmetric D3 brane as

one varies the complex structure of Y . This brane wraps a special Lagrangian submanifold,

which is defined as a Lagrangian submanifold L ⊂ Y with

dVL = R exp(−iπξ)Ω|L. (2.6)

Here dVL is the volume form on L, Ω is the holomorphic 3-form on Y and R and ξ are real

numbers. The phase ξ of the special Lagrangian is constant over L. Since Ω is defined only

up to multiplication by an overall constant, one can set ξ = 0 for a given brane. However,

we will need to compare values of ξ for different branes, so will leave ξ unfixed. Two D3

branes, wrapping different special Lagrangians, are mutually BPS only if their respective

values of ξ are equal.

Now, as one varies the complex structure of Y it is possible for the special Lagrangian

L to become “pinched”; that is, at a particular value of the complex structure moduli L will

become the union of two submanifolds touching at a point [18]. At this point the D-brane

is marginally stable. As one deforms the complex structure past this point, L splits up

into two distinct components L → L1 + L2. In general the phases of the two components

will become distinct, and so the union L1 ∪ L2 is no longer itself special Lagrangian. The

resulting pair of D-branes is no longer mutually BPS. In this way, a single A-brane can

“decay” L → L1 + L2 as one deforms the complex structure.

The key idea in looking for D-brane decays is to find sub-branes1 L1 into which L can

decay. The decay can occur, i.e. L will be marginally unstable, at the point in moduli

space where ξ = ξ1. That is, when the phases of two periods of the holomorphic 3-form

become equal:

arg

∫

L
Ω = arg

∫

L1

Ω. (2.7)

At a generic point in moduli space we expect the periods of Ω to be transcendental complex

numbers. So any two A-branes whose charges are not proportional will typically have

different phases. Thus at a generic point there are no marginally stable D-branes: all

branes are either properly stable or properly unstable.

The attractor fixed points described above are very special, however, in that they admit

many marginally stable branes. In fact, they admit the maximal number of marginally

stable branes.

To see this, consider the 3-brane black hole described above. The D-brane under

consideration, with charge F (3), wraps a special Lagrangian with phase

arg

∫

Y
Ω ∧ F (3) = arg Z. (2.8)

1The idea of a sub-brane is actually poorly-defined but we will use this language here. More correctly

one should use the language of triangulated categories as explained in [19].
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Consider a second “probe” 3-brane with charge v ∈ H3(Y,Z). The phase of this A-brane

will be aligned (or anti-aligned) with the phase of the black hole only if

arg(±Z) = arg

∫

Y
Ω ∧ v. (2.9)

Since v is real, this can be written as

0 = Z̄

∫

Y
Ω ∧ v − Z

∫

Y
Ω̄ ∧ v = −ie−K/2

∫

Y
F (3) ∧ v. (2.10)

The final expression is the natural symplectic inner product on H3(Y,Z). Our condition

is just that v is perpendicular to F (3) with respect to this inner product: 〈F (3), v〉 =
∫

Y F (3) ∧ v = 0.

This is a very striking result. It shows that a D-brane in an attractor background is

far more likely to be marginally stable than a generic D-brane. In particular, the whole

codimension-one sublattice of H3(X, Z) orthogonal to F (3) gives sub-branes with respect

to which L can be marginally unstable. This is in stark contrast to the generic values of

complex structure discussed above.

It is easy to show that all possible D-brane charges cannot correspond to mutually

BPS states, and so, in this sense, this codimension one sublattice is the maximal set of

states that can be mutually BPS. In other words, the attractor equations force the D-brane

to be maximally marginally-stable.

Thus the attractor mechanism forces us to consider the D-brane as a “direct sum” of

constituent objects when we consider moduli spaces. So at the level of moduli spaces we

regard the constituent D-branes as completely non-interacting. As we will see, however, the

RR-fields do produce interactions between the constituent D-branes and it is very important

to take this into account in order to correctly compute the entropy of the system.

Although we have focused on A-branes of type IIB, one can make analogous comments

concerning the B-branes in type IIA string theory on the mirror Calabi-Yau X. As B-brane

computations tend to be more tractable, any entropy calculation will almost certainly be

easier in the IIA language. However, as the mathematical machinery is more abstract we

will make only a few comments here.

A B-brane E may be regarded, in ascending order of honesty, as a vector bundle over

a holomorphic submanifold, as a coherent sheaf, or as an object in the derived category of

coherent sheaves [20] (see [19] for a review). Its charge is

ch(E) ∧
√

td(TX) ∈ Heven(X, Q). (2.11)

The natural inner product between B-brane charges, which is mirror to the intersection

form on 3-cycles given above, is

〈E,F 〉 =

∫

X
ch(E)∨ ∧ ch(F ) ∧ td(TX), (2.12)

where ∨ reverses the sign of (4n + 2)-forms for all n. The notion of a stable special

Lagrangians is replaced by Π-stability and distinguished triangles.
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In the discussion below we will use mirror symmetry to cast some of the computations

in type IIA language, but we will do so only for simple cases where we can evade subtle

issues of Π-stability.

3. The quantum mechanics of special lagrangians

In this section we will describe the moduli space of BPS D3 branes moving in the attractor

geometry described above. We will study the moduli space of probe D3 branes in the

geometry produced by a fixed “background” D3-brane whose entropy we wish to calculate.

The probe D3-branes will be taken to be mutually supersymmetric with the background D3

brane — they may be thought of as candidate decay products formed out of the background

D3 branes making up the black hole. Much of the material in the first part of this section

is a straightforward generalization of [7].

Consider a stack of N probe D3 branes in the near-horizon AdS2 × S2 × Y attractor

geometry. The probe D3 branes are taken to wrap a special Lagrangian L ⊂ Y , and are

point-like in the S2 and AdS2 spatial directions. Since the L directions are compact, one

can integrate over the L directions to obtain a one-dimensional world volume quantum

mechanics. Because of the AdS2 factor, the theory has an SU(1, 1|2) superconformal sym-

metry. Conformal quantum mechanics systems of this type were described in [3], which

considered D0 branes moving in IIA attractor geometries. In fact, since our D3 branes are

point-like in the AdS2×S2 directions, these spatial components of the quantum mechanics

are identical to those described in [3]. We will therefore focus on the Calabi-Yau component

of the moduli space.

Before describing a stack of N D3 branes, first consider a single A-brane wrapping L.

First assume we have a smooth embedding f : L → Y . The special Lagrangian condition

is [21]

f∗ω = 0, f∗(Im(e−iξΩ)) = 0, (3.1)

where ω is the Kähler form on Y . In addition, the D3 brane comes equipped with a

world-volume gauge field A.2 Supersymmetry implies that A describes a flat connection

on a U(1) bundle3 over L. We will now do a local analysis of the moduli space of these

supersymmetric D3 branes, following [22, 7] (see also [17, 23] for a review).

We can imagine deforming a D3 brane in two ways, either by changing f or by changing

A. Infinitesimal deformations of f are in one-to-one correspondence with harmonic one

forms on L. To see this, consider a one-parameter family of embeddings ft : R × L →
Y which preserve the special Lagrangian condition. Here t is a coordinate on R. It is

straightforward to show that

f∗
t (ω) = θ ∧ dt, f∗

t (Im(e−iξΩ)) = e−K/2 1

2k
∗ θ ∧ dt (3.2)

2This world-volume gauge field A should not be confused with the connection A on moduli space that

we will discover below.
3Assuming B = 0 on Y . A nonzero B-field results in a “twisted” line bundle.
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where ∗ is the Hodge star on L and the constant k =
√

8Vol(Y ). Both of these forms

are necessarily closed, so θ is harmonic. If we denote by θa, a = 1, . . . , b1(L), a basis of

harmonic one forms on L, this provides us with a family of infinitesimal deformations dta

of f . It was shown in [22] that one can integrate these infinitesimal deformations to find a

good set of local coordinates ta on the moduli space of special Lagrangians.

The space of flat connections A is also of dimension b1(L). This is because by a

judicious choice of gauge we may always put the world-volume gauge field in the form

A =
∑

a saθa. The constants sa form a set of coordinates on the moduli space of flat

connections.

It is important to note that the moduli space of A-branes is not necessarily equal to

this moduli space of bundles and special Lagrangians. Quantum corrections coming from

holomorphic disks with boundary on L can lead to obstructions. Thus, in general, the

moduli space of A-branes can be less than 2b1(L). We refer to [24] for an example of this

and [19] for further discussion.

We will ignore such obstructions here. We conclude that locally the moduli space of

BPS D3 branes is a product of the form M = H1(L) × H1(L), with coordinates (ta, sa).

There is a natural metric on M, of the form ds2 = gabdtadtb + gabdsadsb, where

gab =
1

2k

∫

L
θa ∧ ∗θb. (3.3)

Here, as above, the Hodge star on L is defined using the metric induced on L by the

embedding f of L into Y . Thus gab is a function of the embedding f , and hence of ta but

not sa. In fact, the metric can be shown to obey gab,c = gac,b. This implies that the natural

Kähler two form on moduli space, J = gabdta ∧ dsb, is closed and defines an integrable

complex structure on M.

We are interested in the dynamics of BPS D3 branes, which are described by a su-

perconformal quantum mechanics on M. The kinetic term is found by taking the moduli

(ta, sa) to depend on time, and expanding the Dirac-Born-Infield world-volume action to

quadratic order in (ṫa, ṡa). The bosonic part of the action becomes

SDBI =

∫

dt

∫

L

√

det(G + B − 2πα′F )

= 2k

∫

dtgab(ṫ
aṫb + ṡaṡb) + · · ·

(3.4)

This is a non-linear sigma model on M. There are of course also fermion terms, as well

as various terms involving motion in the AdS2 and S2 directions, which are just as in [3].

The 2k prefactor follows from our choice of normalization of the metric gab defined above.

Its importance will become apparent below, where we discuss Chern-Simons terms which

are quantized in units of k.

Now, let us consider what happens for N D3 branes. The coordinates (ta, sa) described

above are promoted to matrices, and the world-volume action will include terms involving

the commutators of these matrices. For example, there is now a Chern-Simons type term

of the form [6, 25]
∫

dt

∫

L
f∗

t (F (5))[φa, φb] (3.5)
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where φa is an N × N matrix and f∗
t (F (5)) is the pullback of the Ramond-Ramond field

strength (2.5) sourced by the background D3 branes.

Matrix systems of this form admit a large number of possible ground states, including

both commuting and non-commuting configurations of matrices. According to the Myers

effect [6], the various non-commuting configurations should be interpreted as D5 or D7

branes wrapping cycles in the S2 ×X. However, a non-commuting configuration wrapping

a cycle in X couples to Ramond-Ramond fields in the same way as the associated D5 or D7

brane. It will therefore contribute to the overall charge of the black hole as measured at

infinity. In evaluating the entropy we should sum only over configurations with the correct

asymptotic charges. So we should include states where the D3 branes are allowed to form

D5 branes wrapping the S2, but not where they wrap an internal direction. In this case

the matrices φa describing the D3 brane positions form an N dimensional representation

of SU(2). This representation can be written as a sum of irreducible representations, each

of which corresponds to a D5 brane wrapping the S2 horizon. So, the total number of

different ways our N D3 branes may puff up into a collection of D5 branes is equal to the

number of partitions of the integer N . In fact, configurations where the D3 branes form

a D5 branes in this way give the dominant contribution to the entropy. This observation

was made in [4], which studied configurations of D0 branes in IIA that formed a spherical

D2 brane wrapping the horizon S2.4

For this configuration, where N D3 branes form a D5 wrapping the horizon, (3.5)

becomes the usual Chern-Simons interaction term on the D5 world volume

SCS =

∫

dt

∫

L×S2

A ∧ f∗
t (F (5)). (3.6)

From (3.2), the pullback of the associated RR 3-form F (3) onto the brane world-volume is

f∗
t (F (3)) = f∗

t (Im(CΩ)) =
|Z|√
8V

∑

a

∗θaṫadt. (3.7)

In writing the second equality we have used the fact that ξ = arg Z, since our probe D3-

brane is marginally bound to the background D3-brane. This allows us to compute the

pullback using (3.2). Up to a total derivative, (3.6) may be written as

∫

dt

∫

L
F ∧ f∗

t (F (3)) =
|Z|√
8V

∫

dt
∑

ab

saṫb
∫

L
θa ∧ ∗θb

= |Z|
∫

dtgabs
aṫb.

(3.8)

A “magnetic field” coming from a U(1)-bundle with connection one-form A contributes a

term to the action of the form

SA =

∫

γ
A, (3.9)

4We should emphasize that the non-commuting configurations considered here are supersymmetric, as

in [3], so they are genuine zero energy ground states of the system. This is in contrast with the dielectric

configurations originally considered in [6], which were non-supersymmetric and had positive energy.
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for a path γ in M. Thus we may interpret the Chern-Simons term as producing a magnetic

field with gauge potential

A = |Z|gabs
adtb. (3.10)

Now, since gab,cdtbdtc = 0 we can evaluate the field-strength

F = dA = |Z|gabdsa ∧ dtb = |Z|J . (3.11)

4. Black hole entropy from mirror symmetry

We will now use the results of the previous section to compute the black hole entropy.

We have demonstrated that the dynamics of BPS probe D3 branes is governed by the

world volume quantum mechanics of the form

∫

dt Gabż
ażb + Aaż

a + fermions (4.1)

where za and Gab are the coordinates and metric on moduli space M of special Lagrangians,

and A is the connection with curvature F ∼ J described above. As this is a superconformal

quantum mechanics, the number of ground states in this system is encoded in the number

of chiral primaries. The chiral primary conditions can be written as

D̄h = D̄∗h = 0, (4.2)

where h is a (p, q) form on M and D is the holomorphic covariant derivative with connection

Aa. Solutions of (4.2) are in one-to-one correspondence with elements of H0,q(X,Ωp ⊗L).

Here L is the line bundle over X with first Chern class c1(L) = [F ]. So the black hole

entropy counting can be reduced to a cohomology problem.

We should emphasize that in order to render the supergravity approximation implicit

in the previous discussion valid, we must consider black holes with large charge. This

makes the general computation of the cohomology an exceedingly formidable task. Even

relatively simple D-branes such as certain ones on the quintic threefold are hard to study

in terms of Π-stability [26]. Added to this is the complication that we need to examine an

enormous number of possible decay paths as discussed in the previous section.

However, as we describe in the next section, in some cases one can compute the di-

mension of Hq(X,Ωp ⊗ L) using mirror symmetry. As an illustration, we will show how

this works for the simple case Y = T 6.

4.1 Mirror computation

There is, of course, one 3-brane for which the moduli space is easy to compute. If X is

mirror to Y , then we know from homological mirror symmetry (or, less rigorously but

more transparently, by using [7]) that a 0-brane on X is mirror to a 3-torus on Y . The

moduli space of a D3-brane wrapping such a T 3 on Y is just X. Thus one can compute

Hq(X,Ωp ⊗ L) — and hence the black hole entropy — using mirror symmetry. We will

consider a black hole whose charge is dominated by such 3-branes.
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Consider a B-brane on a Calabi-Yau threefold X whose charge is large and made up

almost entirely of 0-branes. Let us also assume that a 0-brane is a possible decay product

among the multitude of possible marginal decays. This means that the inner product

under (2.12) of a 0-brane with our black hole brane L must be zero. If E is a 0-brane,

then ch(E) is a pure 6-form. Thus, using (2.12) we require that ch(L) has no 0-form part.

The 0-form part of a Chern character measures the rank of a vector bundle. Thus, our big

D-brane must correspond to a vector bundle of rank 0, i.e., it is supported over a proper

holomorphic subspace of X. To put it another way, it must have no 6-brane charge.

The probe quantum mechanics of the special Lagrangian 3-brane described in the

previous section can now be recast as the quantum mechanics of D0 branes on X. This D0

brane theory was studied in [3], and used to compute the black hole entropy in [4]. The

rest of this subsection is essentially a review of this work, which we include here to make

the discussion self contained.

We should emphasize that we cannot consider black holes made entirely of D0 branes,

however, as in the leading supergravity approximation these black holes have zero area. So

we need to include some 4-brane charge. This means that there will be a moduli space of

states involving 4-branes. However, we should note that the number of 0-branes must be

much greater than the number four branes wrapping any given cycle in X. To see this, note

that the Kähler form on X (in ten dimensional units) is determined by the IIA attractor

equation to be

J =

√

q0

D
pAωA, D = DABCpApBpC . (4.3)

Here we have chosen a basis ωA of H2(X,Z) and denoted by pA the number of 4-branes

wrapping the 4-cycle Poincaré dual to ωA. Here DABC = 1
6

∫

ωA ∧ ωB ∧ ωC is a triple

intersection number and q0 is the number of 0-branes. As discussed in section 2.1, the

supergravity approximation is valid only when the size of any two cycle in X is much

smaller than the black hole horizon area (although it must still be large in string units).

From (4.3), this implies that we must have q0 ≫ pA. As long as the 0-brane charge

dominates, the contributions from the moduli space of 4-branes should be negligible in

determining the entropy.5 As discussed above, while it is in principle possible to add D2

brane charge to such a black hole, one can not add D6 branes and maintain supersymmetry.

Now, the moduli space of a 0-brane moving on X is just X itself. This means that the

metric Gab described in section 3 is just the metric on X. In section 3 we demonstrated that

there is magnetic field on moduli space whose field strength is equal to the central charge

|Z| times the Kähler form on X given above. In the IIA language, it is easy to see where

this magnetic field comes from. The IIA supergravity solution for the black hole includes a

Ramond-Ramond four form fieldstrength ωS2 ∧ pAωA, which is sourced by the background

D4 branes. For configurations of fuzzy D0 branes wrapping the S2 horizon, this four form

fieldstrength couples to the D0 brane worldvolume fields via the Myers effect, in a manner

similar to that describe in section 3. The result is a magnetic fieldstrength F = pAωA on

5However, there has been recent progress in understanding these 4-brane contributions in some cases [5].
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moduli space [4].6

To compute the cohomology, note that the bundle L is very ample (as its first Chern

class is the Kähler form). Thus Hp,q(X,L) = 0 if p > 0. We can then use an index theorem

to compute H0,q(X,L) just as in [4]. To leading order in the charges, the answer is

dim H0,q(X,L) =

{

D q = 0, 3,

3D q = 1, 2.
(4.5)

We now need to count the total number of supersymmetric ground states of the theory,

using the chiral primary degeneracies hq = dim(H0,q(X,L)) computed above. As usual, it

is convenient to package the answer as a partition function

Z(q) =
∑

N

p(N)qN . (4.6)

Here p(N) is the number of chiral primary states that may be formed out of N D0 branes.

As described in section 3, according to the Myers effect these N D0 branes may form a

collection of D2 branes wrapping the horizon S2. There is one such collection of D2 branes

for each partition of the integer N . In addition, each D2 brane so formed may occupy any

one of the chiral primary states on the Calabi-Yau counted above. The only restriction

is that chiral primaries with even q obey bosonic statistics, while states with odd p obey

fermionic statistics. Putting this together, it turns out that Z(q) is precisely the partition

function of a conformal field theory with h0 + h2 free bosons and h1 + h3 free fermions:

Z(q) =
∏

n

(1 + qn)h1+h3

(1 − qn)h0+h2

. (4.7)

Using the large N expansion for this formula gives the entropy

S = log p(N) ∼ π

√

1

3
N

(

h0 + h2 +
1

2
(h1 + h3)

)

. ∼ 2π
√

ND (4.8)

As a word of warning, one should probably view the computation in this section and

the previous section as somewhat heuristic, as it is prone to the same objections as the

general SYZ argument. We have certainly not taken into account the fact that special

Lagrangians typically degenerate for certain points in the moduli space. However, we will

see that we can reconstruct this result more rigorously for K3×T 2 in section 5.

6This expression for F also follows from equations (23) and (26). However, one must be careful because

the usual expression for central charge |Z| = (q0D)1/4 is written in four dimensional Planck units rather

than in ten dimensional units. To rewrite it in ten dimensional units we must use the conversion factor

l4

l10
= l

3

10 Vol(X)−1/2
. (4.4)

where Vol(X) =
R

X
J3 = q

3/2

0
D−1/2.
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4.2 An N = 8 example

In this section we will describe the computation for the case Y = T 6, which provides a

useful explicit illustration of these methods. Here the moduli space of special Lagrangians

takes a particularly simple form and the calculations can be done explicitly without using

the mirror symmetry conjecture of [7].

It is straightforward to write down and solve the attractor equations on T 6 (see

e.g. [11]). We will take coordinates on the T 6 to be xi ∼ xi + 1, yi ∼ yi + 1, i = 1, 2, 3.

A choice of holomorphic one forms dzi = dxi + τ ijdyj fixes the period matrix τ . We will

suppress i indices when possible. The metric is

dz · dz̄ = dx · dx + 2dx · Reτ · dy + dy · τ †τ · dy. (4.9)

We will take the following symplectic basis for H3(T 6, Z),

α0 = dx1dx2dx2, αij =
1

2
ǫilmdxldxmdyj

β0 = −dy1dy2dy2, βij =
1

2
ǫjlmdxidyldym

(4.10)

so that
∫

αI ∧ βJ = δJ
I , where I = (0, ij). The charge of the black hole is parameterized

by an element of H3(T 6), which can be decomposed in this basis as

F (3) = p0α0 + P ijαij + q0β
0 + Qijβ

ij . (4.11)

We will focus on the case where p0 and Qij vanish and P is symmetric. In this case the

attractor equations fix the holomorphic three form to be (up to an overall constant)

Ω3,0 = dz1 ∧ dz2 ∧ dz3 = α0 + αijτ
ij + βij(Cof τ)ij − β0(det τ) (4.12)

where (Cof τ)ij is the matrix of cofactors of τ ij and

τ =
i

2

√

q0

detP
P. (4.13)

The entropy of the black hole is

S = 2π
√

|q0 detP |. (4.14)

Now, consider a probe three brane wrapping the xi directions. The induced world-

volume metric is flat. The moduli space is parameterized by a position yi(t) and world-

volume gauge field A = ai(t)dxi, which depend on time. The kinetic terms for yi and ai

come from the DBI action

SDBI =

∫

dt
(

ẏ · τ †τ · ẏ + ȧ · ȧ
)

+ · · · (4.15)

The world volume Chern-Simons term depends only on P ij , and is

SCS =

∫

A ∧ f∗F3 =

∫

dt (a · P · ẏ) . (4.16)
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The action SDBI + SCS describes a particle in a magnetic field, with moduli space metric

and magnetic field strength

ds2 = dy · τ †τ · dy + da · da, F = dy · P · da. (4.17)

Note that both the a and y coordinates are identified with periodicity one. As an aside,

we should note that the two form F defines a complex structure on the moduli space. The

associated holomorphic coordinates are

w = a + τ · y, (4.18)

in terms of which the metric and field strength are

ds2 = dw · dw̄, F = −i

√

detP

q0
dw · ∧dw̄. (4.19)

We can now count the number of chiral primaries, by computing H0,p(T 6,Ωq ⊗ L)

where L is a line bundle with curvature c1(L) = F . By a Kodaira vanishing theorem,

these vanish unless p = 0 (at large charge) so we may use an index theorem for the twisted

Dolbeault complex:

h0,q = Ind∂̄(T 6,Ωq ⊗ L) =

(

3

q

)
∫

F ∧ F ∧ F =

(

3

q

)

det P. (4.20)

The black hole entropy is then computed by partitioning the q0 D0 branes among these

chiral primary states, as in equation (31). For large q0, the combinatorics of this partition

precisely reproduces the black holes entropy (4.14).

5. An N = 4 example

In this section we will consider compactifications with N = 4 supersymmetry, where Y

is of the form T 2 × S for some K3 surface S. Although in this case the moduli space

of special Lagrangians is more complicated than the N = 8 example described above,

we may still perform the computation without relying on the analysis of section 3. One

may view this section as evidence that (3.11) is correct even when the special Lagrangian

fibration in section 3 has degenerate fibers. Some of what we discuss below is related to

the “Donaldson-Mukai map” as described in [27].

The attractor equations for T 2 × K3 were studied in [11]; we will simply quote the

results here. We will denote the coordinates on T 2 as x and y, with x ∼ x+1 and y ∼ y+1.

The charge of the black hole is

W = p dx + q dy (5.1)

where p and q live in H2(S, Z). We will write the holomorphic 3-form on Y as

Ω3,0 = dz ∧ Ω

= (dx + τ dy) ∧ Ω,
(5.2)

– 15 –



J
H
E
P
0
7
(
2
0
0
7
)
0
3
4

where τ is the complex modulus of T 2 and Ω is a holomorphic 2-form on S. The attractor

equation (2.1) then forces (for a suitable choice of normalization)

Ω = q − τ̄ p. (5.3)

Furthermore, τ is determined by p and q to be

τ =
p · q + i

√

p2q2 − (p · q)2
p2

, (5.4)

where the dot product is given by the usual intersection form on S:

p · q =

∫

S
p ∧ q. (5.5)

We will now consider a probe 3-brane on Y , and interpret the Chern-Simons contri-

bution to the world volume action as an effective magnetic field on moduli space, which in

this case will be the mirror, X, of Y .

We will take the probe to wrap the special Lagrangian cycle in T 2 × S that consists

of the circle Poincaré dual to dy times a special Lagrangian 2-cycle L ⊂ S. As above,

this probe D-brane must have its phase aligned with that of the background black hole, so

from (2.10)

∫

Y 2×S
(p dx + y dy) ∧ l dy = l · p

= 0,

(5.6)

where l is the 2-form Poincaré dual to L. Since L is Lagrangian, l · J = 0 where J is the

cohomology class of the Kähler form on S.

To write down the Chern-Simons term, we need to consider a one parameter family of

D-brane probes. For now let us focus on just the K3 factor and consider a one-parameter

family of maps L → S. We will take this one-parameter family to form a loop — i.e., the

final D-brane is the same as the initial D-brane. Denote by T the 3-dimensional subspace

swept out in S by this family; note that T has no boundary, since the one parameter

family is a loop. Each special Lagrangian D-brane comes equipped with a line bundle and

a connection A, which we will extend to a connection over T . The Chern-Simons term is

just7

SCS =

∫

T
A ∧ p. (5.7)

Now, note that the third homology of S is zero, so there must be a 4-dimensional subspace

U ⊂ S such that T = ∂U . Stokes’ theorem yields

SCS =

∫

U
F ∧ p. (5.8)

7We are assuming this family produces an embedding of T into S. This need not be the case in general

but is true for the case we consider here.
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Let MS be the moduli space of probe D2 branes on S, i.e., the moduli space of special

Lagrangians with bundle data. Recall that iSCS takes values in R/2πZ. It therefore defines

a map

SCS : Ω(MS) → S1, (5.9)

where Ω(MS) is the loop-space of MS . Given any space M , π2(M) is defined as π1(Ω(M)).

So, applying π1 to (5.9) yields a map

ηCS : π2(MS) → Z. (5.10)

The moduli space MS is expected to break up into many disconnected components,

corresponding to different types of probe D-branes. To proceed, we must therefore choose

the type of probe brane under consideration. As above we will assert that L is a T 2-fiber

of S so that it is mirror to a 0-brane. According to the SYZ conjecture [7], which is easily

proven for K3 (as we discuss next), this component of MS is itself a K3 surface. We denote

this component Ŝ. In a sense, Ŝ is “the” mirror of S.

The rigorous way to prove that Ŝ is a K3 surface is as follows. The K3 surface S

is hyperkähler, and so admits a whole S2 of complex structures compatible with a given

metric. By choosing a different complex structure, we may turn a special Lagrangian into

a holomorphic curve. To be precise, we may turn the special Lagrangian 2-torus with a

flat line bundle into an elliptic curve in S with a flat line bundle. This is a sheaf supported

on the elliptic curve. One may then compute the moduli space Ŝ of such sheaves. This

was done by Mukai [28], who showed that Ŝ is a K3 surface. In fact, Ŝ is isomorphic to S

as a complex variety.

It is worth emphasizing that attractive K3 surfaces have many special properties.

Because of their large Picard number, they contain many algebraic curves and thus homo-

logically distinct elliptic curves. Any elliptic curve leads to an elliptic fibration so a typical

attractive K3 surface can probably be elliptically fibered in many inequivalent ways. It

is always possible to choose an elliptic fibration of an attractive K3 surface such that it

admits a section. The explicit form of such a fibration was given in [29]. We will assume

that we have chosen the fibration so that this is the case.

Consider this section σ of the elliptic fibration Ŝ. This corresponds to an element of

π2(Ŝ). The precise family of elliptic curves (or special Lagrangians, depending on the chosen

complex structure) in S corresponding to this section may be determined by following

Mukai’s construction. Indeed, a Fourier-Mukai transform may be applied to this section

to yield the family of elliptic curves on S. For an account of this transform in this context

we refer to [30].

In our case, this family of elliptic curves will sweep out a line bundle E over the whole

of S. This line bundle is, of course, the bundle whose curvature F appears in (5.8). It

follows that

ηCS(σ) =
1

2πi

∫

S
F ∧ p. (5.11)

We can now use the Fourier-Mukai transform to express this Chern-Simons term as a gauge

connection on the moduli space Ŝ. To do this, we will first write (5.11) in a more convenient

– 17 –



J
H
E
P
0
7
(
2
0
0
7
)
0
3
4

form. To start, recall from section 2 that there is a natural inner product on H∗(S, Z),

〈α, β〉 =

∫

S
α∨ ∧ β (5.12)

for any α and β in H∗(S, Z). Here α∨ is just α with the sign of the 2-form component

reversed. Furthermore, to any bundle (or sheaf) we may associate its D-brane charge, or

Mukai vector, defined as

v(E) = ch(E) ∧
√

td(TS) ∈ H∗(S, Z). (5.13)

We may therefore write

ηCS(σ) = −〈v(E), p〉. (5.14)

Mukai’s mirror symmetry construction can now be applied using the Fourier-Mukai

transform. This has some known action on H∗, which we denote µ:

µ : H∗(S, R) → H∗(Ŝ, R). (5.15)

This action has the nice feature that it preserves the inner product 〈α, β〉. Thus

ηCS = −〈v(σ), µ(p)〉. (5.16)

We now just have to evaluate µ(p). This will require a few more facts about K3 surfaces.

As is standard in the construction of string theories on K3 (see, for example, [31]) the

moduli of S are determined by a space-like 4-plane Π ⊂ R4,20, where R4,20 = H∗(S, R). To

put a geometric interpretation on this 4-plane one proceeds as follows:

1. First one chooses a vector w in the lattice H∗(S, Z) which generates H4(S, Z), and

a vector w∨ which generates H0(S, Z). We then identify H2(S, Z) as the orthogonal

complement of the span of w and w∨. Note that

〈w,w〉 = 0, 〈w,w∨〉 = 1, 〈w∨, w∨〉 = 0. (5.17)

2. Define Σ′ = Π ∩ w⊥.

3. Define the vector x such that Π is the span of Σ′ and x, x is orthogonal to Σ′ and

〈x,w〉 = 1.

4. Project Σ′ into H2(S, R) to obtain Σ.

5. Decompose

x = αw + w∨ + B, (5.18)

where B ∈ H2(S,R).

Σ, a space-like 3-plane in H2(S, R), is then spanned by Re(Ω), Im(Ω) and J . In fact,

the 2-plane spanned by Re(Ω) and Im(Ω) is spanned by p and q, since we have assumed

that S is an attractive K3 surface. So Σ is spanned by p, q and J .
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The B-field is then given by B; and 〈J, J〉, the volume of the K3 surface, is given by

〈x, x〉 = 2α + 〈B,B〉.
Now, l — the Poincaré dual of our special Lagrangian fiber — is perpendicular to both

p (from (5.6)) and J (since it is Lagrangian). We can now apply mirror symmetry, which

consists of the hyperkähler rotation of the complex structure required to make the fiber

holomorphic, followed by the Fourier-Mukai transform µ. Our special Lagrangian fiber

turns into a 0-brane, so µ(l) must be a 4-form, and thus w. Now, since l is perpendicular

to p, µ(p) is perpendicular to w.

To fix µ(p) completely we must deal with one subtlety. Mirror symmetry is generally

thought of as exchanging deformations of complex structure with deformations of B + iJ .

This is somewhat ambiguous for K3 surfaces, because the hyperkähler structure provides

many possible maps that can be interpreted as mirror symmetry. This ambiguity may be

fixed as follows. We will take the space-like 4-plane Π to be spanned by two 2-planes, Ω

and ℧, where Ω is spanned by p and q and ℧ is spanned by J ′ and x.8 J ′ is projected into

H2(S, R) to obtain J . Ω and ℧ should be thought of as encoding complex structure and

B + iJ deformations, respectively. We now require that mirror symmetry interchanges Ω

and ℧.

We will use hats to refer to quantities for Ŝ. Thus

µ(Ω) = ℧̂, µ(℧) = Ω̂. (5.19)

µ(p) must lie in the plane spanned by Ĵ ′ and x̂. Since l is perpendicular to p and not to q,

ŵ = µ(l) is perpendicular to µ(p) and not to µ(q). But ŵ is perpendicular to Ĵ ′ and not

x̂, so

µ(p) = κ̂J ′, (5.20)

for some real number κ. We may assume that we have chosen our mirror symmetry

transform such that κ > 0.

κ may be computed from above by knowing the volume of Ŝ. We compute

x̂ =
1

(q.l)

(

q − (p.q)

p2
p

)

. (5.21)

It follows from above that

Ĵ2 = x̂2 =
p2q2 − (p.q)2

p2(q.l)2
(5.22)

Thus, using (5.4), we have

κ =
(q.l)

Im(τ)
. (5.23)

8We are implicitly assuming that B lies in the span of algebraic 2-cycles. We are free to make this

assumption for attractive K3 surfaces.
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We conclude that the Chern-Simons contribution (5.11) is simply related to Ĵ ′:

ηCS = −〈v(σ), µ(p)〉

=

∫

S
σ̌ ∧ κĴ ′

= κ

∫

σ
Ĵ ′,

(5.24)

where σ̌ is Poincaré dual to σ. Note that Ĵ ′ = Ĵ + rŵ for some real number r. The rŵ

component of Ĵ ′ corresponds to a 4-form and therefore has no contribution in the above.

We can therefore assert that

ηCS = κ

∫

σ
Ĵ . (5.25)

In fact, this is precisely the contribution of a magnetic field on moduli space, with

curvature equal to κĴ . To see this, consider a connection A on Ŝ, and let γ be a loop in

Ŝ. Since π1(Ŝ) = 0, there is a disk D such that ∂D = γ. The Wilson line associated to

this loop contributes to the path integral as

SW =

∫

γ
A =

∫

D
F , (5.26)

where F is the curvature of A. This time iSW is valued in R/2πZ and so we may repeat

the argument given above to get a map

ηW : π2(Ŝ) → Z, (5.27)

where, for our section σ we have

ηW (σ) =
1

2πi

∫

σ
F . (5.28)

Comparing this to (5.25) we see that the effect of the Chern-Simons term on S is mirror

to the Wilson line contribution of a connection on a line bundle on Ŝ whose curvature is

given by 2πiκĴ .

We may also analyze the contribution to the magnetic field from the T 2 part of Y . This

computation can be done in a way similar to section 4.2. The result is that the cohomology

class of the curvature obeys
[

1

2πi
F

]

= µ(p) + (q.l)e, (5.29)

where e generates H2(T 2, Z) and the Kähler form is given by (at least in cohomology)

Ĵ =
Im(τ)

(q.l)

[

1

2πi
F

]

. (5.30)

This is the analogue of equation (3.11) subject to the same scale change as (4.4).

The area of the event horizon can be computed [11] to be 4π∆, where

∆ =
√

p2q2 − (p.q)2. (5.31)

– 20 –



J
H
E
P
0
7
(
2
0
0
7
)
0
3
4

So far everything we have said in this section is exact. In order to compute the entropy

we need to start making some approximations. Let us decompose p and q as follows:

p = sl + p̃

q = Nl + ml∨ + q̃,
(5.32)

where l∨ is Poincaré dual to the sum of the section and fiber of the elliptic fibration (i.e.,

µ(l∨) = w∨), q̃ is perpendicular to l and l∨ and similarly for p̃.

Following the mirror symmetry construction above one finds that on X = Ŝ × T 2 we

have the following interpretation of these charges:

• N counts the 0-brane charge.

• q̃ counts 2-branes wrapping 2-cycles in Ŝ.

• s counts 2-branes wrapping the T 2 factor.

• p̃ counts 4-branes wrapping the T 2 factor and 2-cycles in Ŝ.

• m counts 4-branes wrapping Ŝ.

• As promised in section 4 there can be no 6-brane charge.

Since we are assuming 0-brane charge dominates, we have q2 ≃ 2Nm and p2q2 ≫
(p.q)2. This gives

Area = 4π
√

2Nmp2. (5.33)

Now we can compute the entropy using the method of section 4. As in [4] we may use

an index theorem to compute the Hodge numbers hp,0 in terms of F . We obtain

S = π

√

2Nm

(

p2 − 2

3

)

. (5.34)

Thus we have agreement between the area and entropy so long as p2 ≫ 1. This condition

is explained by the discussion at the end of section 2.1. It is easy to compute the area of

the T 2 factor:

Area(T 2) =

∫

T 2

Ĵ =
∆

p2
. (5.35)

Thus the ratio of the area of event horizon to the area of the T 2 factor, which must be

large, is 4πp2. If we view this as a type IIB compactification, then the complex structure

of T 2 is constrained to not be too large as expected in section 2.1.

Note that the 2-brane charge, q̃ and s, plays no rôle in either the entropy or the area

so long as the D-brane is dominated by 0-brane charge. If Nm is not much greater than q̃2,

for example, then we will have a non-negligible 2-brane contribution to the area and (5.33)

will not longer be valid. However, in this case we will have other important decay modes

involving 2-branes that we have not accounted for and so (5.34) will be modified too.
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6. Conclusion

We have described a procedure for computing the entropy of Calabi-Yau black holes in

type IIB string theory, at least for large charges. This procedure is simple to state, but

in practice is technically challenging. It relies on an ability to analyze the stability of the

given D-brane and enumerate the resulting constituent D-branes. In addition, one requires

an understanding of the moduli space of special Lagrangians, which we can claim only for

a small subsector. Within that context, we have provided evidence that it works for some

simple examples. It should also be noted that this procedure highlights the special nature

of Calabi-Yau spaces at attractor points. The analysis relies crucially on the near-horizon

superconformal quantum mechanics developed by [3, 4].

Clearly it would be nice to go beyond the examples described in this paper, and com-

pute the entropy of D-branes dominated by some charge other than 0-branes (or their

mirrors). That is, we would like to consider probes that are not mirror to 0-branes. Sec-

tion 3 indicates that this is possible. We argued that the moduli space of probe branes is

valued in a line bundle L over the moduli space of special Lagrangians, with c1(L) given

by the Kähler form associated to the natural metric on this moduli space. Although the

methods in section 3 cannot be considered rigorous, it is certainly tempting to conjecture

that this beautifully simple result is true in general. Counting the probe quantum states

is then given by cohomology with values in this bundle.

An obvious place to look for other examples is T 2 × K3. The probe 3-brane will be

of the form S1 × C for some 2-cycle C in K3. In section 5 we described the case where

C is an elliptic curve. One might think the simplest case to consider is C ∼= S2. The

moduli space of such a curve is a point, so the analysis starts to look rather trivial. In

fact, for black holes whose charge is dominated by such a D-branes it is easy to prove that

p2q2 − (p.q)2 < 0. This means that the attractor mechanism breaks down and the solution

is not a spherically symmetric black hole.

The next case to consider would be a curve C of genus g > 1. The moduli space of such

curves is understood to an extent following Mukai’s work [32]. In particular it is known that

the moduli space is hyperkähler and of complex dimension 2g. This was studied in [27]. It

would be interesting to see if some examples in this case could be computed.

A few caveats remain. We have not explained the insight of [4] that the dominant

contribution to the entropy comes from states which wrap the horizon a single time. We

also have not provided a guess as to the states which give the subleading terms to the

entropy (as an expansion in inverse charge). The answers to these questions will surely

lead to new insights into the nature of black holes in string theory.
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